p62/SQSTM1 as an oncotarget mediates cisplatin resistance through activating RIP1‐NF‐κB pathway in human ovarian cancer cells

نویسندگان

  • Xiao-Yu Yan
  • Yu Zhang
  • Juan-Juan Zhang
  • Li-Chao Zhang
  • Ya-Nan Liu
  • Yao Wu
  • Ya-Nan Xue
  • Sheng-Yao Lu
  • Jing Su
  • Lian-Kun Sun
چکیده

Platinum-based therapeutic strategies have been widely used in ovarian cancer treatment. However, drug resistance has greatly limited therapeutic efficacy. Recently, tolerance to cisplatin has been attributed to other factors unrelated to DNA. p62 (also known as SQSTM1) functions as a multifunctional hub participating in tumorigenesis and may be a therapeutic target. Our previous study showed that p62 was overexpressed in drug-resistant ovarian epithelial carcinoma and its inhibition increased the sensitivity to cisplatin. In this study, we demonstrate that the activity of the NF-κB signaling pathway and K63-linked ubiquitination of RIP1 was higher in cisplatin-resistant ovarian (SKOV3/DDP) cells compared with parental cells. In addition, cisplatin resistance could be reversed by inhibiting the expression of p62 using siRNA. Furthermore, deletion of the ZZ domain of p62 that interacts with RIP1 in SKOV3 cells markedly decreased K63-linked ubiquitination of RIP1 and inhibited the activation of the NF-κB signaling pathway. Moreover, loss of the ZZ domain from p62 led to poor proliferative capacity and high levels of apoptosis in SKOV3 cells and made them more sensitive to cisplatin treatment. Collectively, we provide evidence that p62 is implicated in the activation of NF-κB signaling that is partly dependent on RIP1. p62 promotes cell proliferation and inhibits apoptosis thus mediating drug resistance in ovarian cancer cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

p62/SQSTM1 is involved in cisplatin resistance in human ovarian cancer cells via the Keap1-Nrf2-ARE system.

The mechanisms underlying cisplatin resistance in tumors are not fully understood. Previous studies have reported that cellular resistance to oxidative stress is accompanied by resistance to cisplatin. However, the relationship between the resistance to oxidative stress and cisplatin drug resistance in human ovarian cancer cells (HOCCs) is not clear. Here, we reveal a critical role for the mult...

متن کامل

URGCP/URG4 promotes apoptotic resistance in bladder cancer cells by activating NF-κB signaling

Cisplatin is a well-known chemotherapeutic agent, it could cause DNA damage and induce apoptotic cell death, but the cisplatin resistance also appears, it's important to reveal the mechanisms of cisplatin resistance [1]. URGCP/URG4 is overexpressed in various tumors and plays critical role during tumor development. We found URGCP/URG4 was upregulated in bladder cancer cells and tissues, URGCP/U...

متن کامل

Histone H4 expression is cooperatively maintained by IKKβ and Akt1 which attenuates cisplatin-induced apoptosis through the DNA-PK/RIP1/IAPs signaling cascade

While chromatin remodeling mediated by post-translational modification of histone is extensively studied in carcinogenesis and cancer cell's response to chemotherapy and radiotherapy, little is known about the role of histone expression in chemoresistance. Here we report a novel chemoresistance mechanism involving histone H4 expression. Extended from our previous studies showing that concurrent...

متن کامل

Cisplatin triggers cancer stem cell enrichment in platinum-resistant cells through NF-κB-TNFα-PIK3CA loop

BACKGROUND Parallel to complex alteration in molecular and cellular events, enrichment of cancer stem cells (CSC) contributes significantly in deliberation and maintenance of cisplatin resistance. Cisplatin mediated CSC enrichment is well established in various cancers, yet the underlying mechanism is largely unknown. Cisplatin also promotes transcriptional upregulation of PIK3CA, hence activat...

متن کامل

Caveolin-1 mediates chemoresistance in cisplatin-resistant ovarian cancer cells by targeting apoptosis through the Notch-1/Akt/NF-κB pathway.

Caveolin-1 (Cav-1), a family of ubiquitously expressed oligomeric structural proteins in many mammalian cells, has been shown to be an effective regulator of tumorigenesis. Recent studies have indicated that Cav-1 can promote resistance to chemotherapy in a variety of tumors. However, the regulation of Cav-1 on chemoresistance in ovarian cancer is still unknown. In the present study, the mRNA a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 108  شماره 

صفحات  -

تاریخ انتشار 2017